MXC-HUBER の管理マニュアル

2008-3-14/21/09-12-18 増山記

2006年3月、制御コンピュータが EWS から PC に更新された。 新 OS は LINUX(Red hat)

HUBER4 軸の全景

データム LED

コントローラは4軸架台の下にある

右側の青色スイッチが押し込まれた状態が ON。

赤色スイッチを押すと、RESET される。(ゴニオの誤動作によるアームの衝突を回避!) 電源の ON は HUBER 4 軸のωおよび χ 軸のデータムセンサーLED の点灯、あるいはゴニオマニ

ュアルコントローラで4軸が動くことで確認できる。 **不必要にコントローラのスイッチを押さないこと**

長期運休後は、念のため、4軸コントロールボ ックスによる手動操作で正常のことを確認後に PC操作(データムなど)を行うこと! MXC 制御 PC

User Name と Password は

mxc xxxx mxcsys yyyy

- 1. 電源が切れていることを確認して、CPUタワーの電源をいれる
- 2. ディスプレイが濃紺のバックグランドでログイン画面になるまで待つ
- 3. ユーザー名 mxc でパスワード ワン・ツー・スリー とログインする
- 4. まず、何もない画面でマウスをクリックして、ターミナルウインドをひとつ開けておく。
- 5. 次のように、左側に mxc のアイコンが出てくるのでクリック。

1323 1323 1323 1323 1324	□ 二才の緊急 は (Junchest) (P-2000) 100 (C >>20) 「 (Junchest) (P-20
Mxc の終了はこの 三角形をクリック する	144 (-1480-000 (-24) - 25-(-1480-03-15-) 194 (-1480-000 (-24) - 25-(-1480-03-15-)) 194 (-1480-03-15-)) 194 (-1480

mxc のアイコンをクリックすると、MXC のターミナルウインド(白地のコマンドラインのウインド)が開くので、

```
①HUBER 制御(default= huber) : ↓
②システムの選択(m|c): m↓
③作業ディレクトリー名の選択/入力 たとえば mashi08↓
④X 線の種類(mo|cu|-): mo↓
```

を入力する。

その結果、画面上部に JOB SELECTION、その右に E. STOP、左に STATE のウインドが現れ、 MXC のターミナルウインドはラン・モニタウインドとなる。

もし、右に E. STOP、左に STATE のウインドが正常に現れない時は、JOB SELECTION で終 了(△マーク)をクリックし、一端、mxc を閉じる。次に、4軸架台の下のコントローラボック スの電源を OFF、ON した後、再び、mxc のアイコンをクリックして立ち上げ直す。 注意:コントローラボックスの電源を OFF した後には、計数回路の初期設定をしないとカウンタ ー回路が働かない。それには MXC の JOB SELECTION で Manual を選び、Manual 画面のメ ニューから HV/PHA setting をクリックして Main の HV および PHA の値を execute をクリッ クすることで設定すること。

STATE connect			JOB SELECTION	Hardcops 安枝	
MENU			HV/PHA setting		
Batum/Elen. ope.)		Main	Monitor	-/	
HV/PHA setting)	HV [V]	: 690	:0	/	
HV/PHA scanning)	PHA BL [V]	: 1.30	:0.00		
Goniometer scanning)	W [V]	:2.20	: 0.00		
Running test)	node	T Diff v 1	a Truce a		
prrection angle meas.)		execute)	evecute)	0	
Common setting)		×			
exit	Scaler switching	🖌 Main	Monitor	Monitor (timer))
	Exposure time reset	[sec] :0.0	-	• • • • • • • • • •	<u>execute</u>)

6. パラメータの確認

1) JOB SELECTION の MENU から Common setting を選ぶ。

MENU	Common setting [variable parameters]
Datum/Elem. ope.	
HV/PHA setting	Type of gonio, head 🗹 Arcless 🔄 Eucentric
HV/PHA scanning	Dia. of collimator [mm] 0.3 🛒 0.5 1.0
Goniometer scanning)	Size of rcv. slit [deg] equa.] 0.38] 0.56] 0.75 🗹 0.94] 1.13
Running test	merid. 0.38 0.56 0.75 🗹 0.94 1.13
Correction angle meas.)	Correction angles [deg] 2theta : -0.027 _ 0mega: 0.376 _ Chi : -0.002
Common setting	Monochromator const. (Graphite) 🗌 d-value= 3,36060 🖋 cos^2(2Tm): 0.9559
exit)	HV/PHA [V] (Main) HV: 690 EL: 1.30 W: 2.20
	HV/PHA [V] (monitor) HV: 0 BL: 0.00 W: 0.00
	User's angle restrictions 2theta : -70.000 - 80.000
	Omega: <u>-35,000</u> - 40,000
	Chi : -170.000 - 170.000
	Phi : -175.000 - 175.000
	Attenuation factors 0: 1.000 1: 1.480 2: 2.210 3: 3.29
	I(max.) for attenuation [cps] : 50000
	Radiation (🗾 Mo) [A] 🗹 K(a) = 0,710730 🛄 K(a1) = 0,709300
	K(a2) = 0.713590 arbitrary : 0.000000
A CONTRACTOR	
	ωは±38°で架台に当たる

¢は±177°でデータ

User Angle restriction は -92< 20 <75, -37.5< ω <37.5, -175< φ <175 ┌── もし、χ=180°セッティングでクライオ搭載時は、さらに -45< χ <45 ムリミッターに当たる 2) JOB SELECTION の MENU から correction angle measurement を実行する時

(これは、ゴニオの光学系が狂った時の補正角の測定であるので、通常は不要) -170<φ<-10 とすること。

3) ピークサーチの時(これはサンプルをマウントしたらいつもやるだろう)

Interactive の MENU から Peak search parameter setting を選んで、 $-170 < \phi < 170$ とする。

and the second se	Peak se	earch params setting	
			undo) (exit)
Search mode 🛒 partitioning	📃 allov	er	
No. of peaks : 27			
Search region 2theta start [deg]:35.0	2theta end [deg] : 3.0	
chi start [deg]:0.0	chi end [deg] : 90.0	
phi start [deg]:-170.0	phi end [deg] : 10.0	
Coef, for phi speed	: 0.0040		
Sampling time [sec]	: 0.20		
Peak detection coef.	:5		
Min. peak int. [cps]	: 200		
Min. counts in f-tune [counts]	: 1500		
Least counting time in f-tune [sec]:0.2		
Check width of omega [deg]	: 2.500		
Value for peak dup, check [A^(-1)]	: 0.010		
Overlap in r-window [%]	: 0.0		
Data storing mode	eu ladd	2theta meas, mode TL omena	(+ -) oran

クライオが載っていない時、ピークサーチの範囲は **0< χ <90** でよいが、クライオ搭載時は -40< χ <40 とすること。

7. サンプル情報を記入し、ピークサーチを行うのは、Standard の Peak search

	STINGARD PNACESSING	
Demator 1 Milando		
Samla + Rh2 Ca 14		
Disservational and Herichts 0, 30 Width	N1 0, 20 Beatly1 0, 30	
Deventul@/cs/3] : 1,7000		
Holecular Formula: RbC Cd7 14		
Formula weight : 125.0		
Comment : 81 in glass capilary		
NORMAE SELECTION		
	Initial setting	
	Asses datum) pet NUTMA)	
Dystal souting	Anon datus	
Crystal sourcing		
Drystal sourcing Prof. march UR and Brooks	Initial setting <u>Asses datus</u>) ast NOTMA Drystal sounting Emetral path <u>esecute</u>)	
Orgetal search Ped, search UR and Bracals Intrine cale,	Initial setting <u>Assec datas</u>) met NOTMA() Origital menting Control path	
Digital sourcing Post march Di and irmonis Introe cale, Line speetry sheck	Initial setting <u>Asses</u> datas) and NUTMB() Crystal mainting Control path 	
Orgetal essences Post search UR and Breaks Lettree calls, Later spearty thesk Set 2.5, person, years)		
Crystal scatting Point scatting Us and broads Intrin calo. Lase spearting thest Set 2.C. person. ween	Initial setting <u>Assoc datas</u>) set NOTMA() 	
Oystal scarting Veal search Of and bracks Use spectry check Start data collection		
Cystal sources Yeak seeks Took seeks Los speetry steks Stert data collection		
Cystal sorting Vest seets Seet beaats Let nemers Seet the nemers Seet the nemers Seet the nellection		
Cystal scenary Yeak seeth Yeak seeth Low Breaks Low Breaks Low Breaks Sart and scaling take Sart and scaling take		

注: Peak Search は、まず全軸データムで始まるので、事前にデータムの必要はない。

8. クライオを搭載する時は、 $\chi = 180^{\circ}$ 設定をする。 そのため、

1)制御パラメータファイルを変更する。

①UNIX コマンドウインド(ターミナル窓)から

home:/home/mxc% su mxcsys [mxcsys@huber ~/mxc]\$ cd /home/mxcsys/data

[mxcsys@huber ~/data]\$ cp -p instr.180deg instr

[mxcsys@huber ~/data]\$ exit

home:/home/mxcsys/data% cd

として、instrファイルを変更する。

通常のクライオを搭載しないχ=0°設定にする時は、

cp -p instr.0deg instr

である。

② χ軸のデータムセンサのマイクロスイッチを D.ON に変更する(データムで赤(マーカ白の 位置では緑)が点灯)

元に戻した(χ=0°設定)ときは、L.ONに変更(データムで緑と赤が共に点灯)

左図はχクレードルを真上からみたところ

この<u>マイクロスイッチ</u>

③ χクレードルのリミッター位置を±46°でリミッターが作動するように調整する。

データムについての注意

*χ*とωはデータム位置で黒と白の入れ替わりをデータムセンサが光学反射率の違いで検出して いる。光線照射口が離れ過ぎていると、白を黒と誤判定し、データム暴走となることがある。

とくに、 χ は黒白のアルミの輪が歪んでいるので、 $\chi = 0^{\circ}$ 設定と180°設定で、光線照射 口と白黒マーカーの位置を調整し直さなければならない。(必ず行うこと!)

以上は3月14日記す

101室のwebカメラ <u>http://133.62.210.88/</u> は学内からのみ見える

割り当て IP アドレス HUBER 133:62:210.37、dip3000(32), dip200(33), sgi(35), afc5(38)